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Abstract: Functional near-infrared spectroscopy (fNIRS) is a fast-developing non-invasive 
functional brain imaging technology widely used in cognitive neuroscience, clinical research 
and neural engineering. However, it is a challenge to effectively remove the global 
physiological noise in the fNIRS signal. The global physiological noise in fNIRS arises from 
multiple physiological origins in both superficial tissues and the brain. It has complex temporal, 
spatial and frequency characteristics, casting significant influence on the results. In the present 
study, we developed a novel wavelet-based method for fNIRS global physiological noise 
removal. The method is data-driven and does not rely on any additional hardware or subjective 
noise component selection procedure. It consists of two steps. Firstly, we use wavelet transform 
coherence to automatically detect the time-frequency points contaminated by the global 
physiological noise. Secondly, we decompose the fNIRS signal by using the wavelet transform, 
and then suppress the wavelet energy of the contaminated time-frequency points. Finally, we 
transform the signal back to a time series. We validated the method by using simulation and real 
data at both task- and resting-state. The results showed that our method can effectively remove 
the global physiological noise from the fNIRS signal and improve the spatial specificity of the 
task activation and the resting-state functional connectivity pattern. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction
Because of low-cost, portability and high ecological validity, functional near-infrared 
spectroscopy (fNIRS) becomes a fast-developing non-invasive functional brain imaging 
technology. fNIRS has been widely used in various fields, such as cognitive neuroscience [1], 
clinical research [2] and neural engineering [3]. fNIRS measures the hemodynamic activity in 
the cerebral cortex. A typical fNIRS measurement channel consists of a near-infrared light 
source and a light detector placed on the scalp, forming a “banana-shaped” light path in the 
head due to the biological tissue’s diffusional scattering property. The distance between the 
source and the detector (S-D distance) is generally around 3 cm, which ensures the 
“banana-shape” reach adequate depth from the scalp and pass through the cerebral cortex [4]. 
Because the oxygenated hemoglobin (HbO) and the deoxygenated hemoglobin (HbR) have 
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distinct absorption spectrum to the near-infrared light, so the concentration change parameter 
of the HbO and the HbR in the cerebral blood can be calculated from the intensity change of 
dual wavelength near-infrared lights using the modified Beer-Lambert law (MBLL) [5]. 

However, in practice it is a major challenge that the fNIRS measurement is often 
contaminated by the global physiological noise. This globally distributed physiological noise 
usually casts significant influence on various kinds of experiment. For example, in the 
task-based study, it may cover up the evoked neural activity from being detected [6–8], whereas 
it may lead to spurious global connectivity pattern in the resting-state functional connectivity 
study [9, 10]. The global physiological noise in fNIRS mainly arises from the physiological 
fluctuation of the blood supply system in the superficial tissue layers including the scalp and the 
skull, and it also arises from the physiological vascular oscillation inside the brain [11–13]. It is 
usually the dominant component of the fNIRS signal because the photon density of the 
“banana-shaped” light path decays severely with the depth increases, so the fNIRS signal is 
much more sensitive to the hemoglobin concentration change in the superficial layers than that 
in the cortical layers (about 10—20 times [12]). Therefore, essentially it is a difficult weak 
signal detection problem to recover the neural activity from the fNIRS signal contaminated by 
the global physiological noise. 

Several methods have been developed to remove the fNIRS global physiological noise (see 
[14] for a review). One frequently-used method is the band-pass filtering which removes the 
noise by suppressing the power in the noise frequency band [15]. The problem of this approach 
is that it is necessary to know the exact frequency characteristics of all physiological noise 
which may vary over time, space and across individuals. Another issue is if the frequency band 
of the noise overlaps with that of the neural activity, the filter may destroy the experimental 
effects of interest. 

The short source-detector distance channel (sSD channel) based correction is a kind of 
effective method for removing the fNIRS global physiological noise [8, 13, 16–20]. By using 
relatively short S-D distance (about 0.5 to 1.5 cm [12, 21]), the “banana-shaped” light path can 
be constrained within the superficial layers rather than reaching the cerebral cortex. Therefore, 
the signal from the sSD channel is usually assumed as a good measure of the superficial 
physiological noise and is used to remove the superficial physiological noise in the normal S-D 
distance channel. Although this method is very effective, it has several practical shortcomings. 
Firstly, not all fNIRS apparatus support sSD channel. Secondly, configuring sSD channel 
increase the setting up time. Thirdly, the superficial physiological noise is not homogeneously 
distributed on the head [11], but the number of fNIRS channels is usually limited. It is 
impossible to allocate each normal channel with an additional sSD channel to record the noise. 
It is still a difficult problem to optimize the arrangement of the limited sSD channels [18, 21]. 

The blind source separation (BSS) algorithms such as principal component analysis (PCA) 
[22–25] and independent component analysis (ICA) [26, 27] are another option for global 
physiological noise removal. These methods firstly decompose the fNIRS signal into a series of 
source components with either the orthogonal (PCA) or the statistical independent (ICA) 
assumption. Then the noise components are identified by means such like energy sorting or 
spatial uniformity checking, based on different assumptions about the noise. Finally, the signal 
is separated from the noise and reconstructed. The BSS methods are good alternatives for 
global physiological noise removal, especially when sSD method is unavailable. However, the 
performance of these methods highly depends on the noise component identification procedure, 
which is usually under human’s supervision or even needs manual selection which requires rich 
experience from the user. Another potential problem of the BSS methods is that they cannot 
handle the time lags among the physiological noise of different channels. 

The wavelet transform (WT) is a powerful mathematical tool for non-stationary signals’ 
time-frequency analysis. The wavelet transform can expand a time series into time-frequency 
space by using both time and frequency localized basis functions (wavelet basis). It uses low 
time resolution at low frequencies and high time resolution at high frequencies and thus is 
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time-frequency adaptive. Based on WT, the wavelet transform coherence (WTC) can further 
give the coherence between two signals in the time-frequency space. In previous studies, WT 
and WTC were widely used in fNIRS data preprocessing and analysis. For example, WT was 
used in fNIRS signal detrending [28] and motion-induced artifact removal [29–32]. While 
WTC was used to calculate the time-frequency coherence between the fNIRS signal and the 
peripheral physiology recording signal to identify and quantify the physiological components 
in fNIRS signal [33, 34], or between the fNIRS data and the predicted brain response to detect 
task activation [35]. Moreover, in recent years, WTC was also frequently used in fNIRS 
hyperscanning studies to investigate the inter-brain synchronization during social interaction 
between two or more brains e.g [36–39]. 

However, to our knowledge, the wavelet-based fNIRS global physiological noise removal 
remains vacant. In the present study, we proposed a novel wavelet-based method to remove the 
fNIRS global physiological noise. Our method consists of two steps. In the first step, we use 
WTC to automatically detect the time-frequency points contaminated by the global 
physiological noise. In the second step, the fNIRS signal is decomposed with WT, the wavelet 
energy of the contaminated time-frequency points was then suppressed, and the signal was 
finally reconstructed. We conducted simulation and real experiments of both task- and 
resting-state to validate the performance of our method. 

2. Method 
2.1 Wavelet transform and wavelet transform coherence 

Wavelet transform is a powerful time-frequency analysis technique. A wavelet is a function 
with zero mean and is both frequency and time localized. For example, the Morlet wavelet, 
employed in the present study and other fNIRS studies [33–35] for its good performance in 
time-frequency analysis, is defined as 

 
21

0 21/4
0 ( ) ,ie e ηω ηψ η π −= −  (1) 

where 0ω  is dimensionless frequency ( 0ω  > 5) and η  is dimensionless time. 

0 ( )ψ η  is usually known as a “mother” wavelet. By adjusting the scale ( s ) of the mother 

wavelet ( stη = ) and normalizing it to have unit energy, a series of wavelet basis can be 

obtained. The wavelet transform can be viewed as applying a bandpass filter to the time series, 
in which the time series ( ,  1, 2, ,nx n N=  ) is convolved with the scaled and normalized 

wavelets (usually in Fourier space for fast speed [40]), writing as 
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where tδ  is uniform time steps and ( ) 2
,

nxW n s  is defined as the wavelet power [41]. The 

above wavelet transform also has its corresponding inverse wavelet transform (IWT) which can 
reconstruct the signal using time- and frequency- localized components (for mathematical 
details, see [42] and [43]). 

Based on the wavelet transform, the wavelet transform coherence can give the coherence 
between two time series at each point of the wavelet-divided time-scale plane, and thus can be 
used to analyze the co-varying characteristics between two time series with both temporal and 
frequency resolution. The wavelet transform coherence between two time series nx  and ny  is 

defined as 
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where *
,n n n nx y x yW W W=  and * denotes complex conjugation. 

2

,n nx yW  is defined as the cross 

wavelet power. S  is a smoothing operator consisted of a temporal smoother and a scale 
smoother [44]. The computational implements of WTC and WT/IWT have been provided in the 
MATLAB software (R2017a, MathWorks Inc., Massachusetts, USA). 

2.2 The WT-based method for global physiological noise removal 

Generally, the basic concept of the wavelet denoising is to decompose the signal into 
time-frequency space, and then identify those noise-related time-frequency points by using 
appropriate criterion and set their wavelet coefficients to zero, and finally transform it back to a 
time series. Our method uses the same concept. The key point is that we use WTC to identify 
those globally co-varying time-frequency points as contaminated by the global physiological 
noise. In our method, the global physiological noise is removed per channel. For each channel, 
the noise is removed by using a two-stage procedure. In stage one, the time-frequency points 
contaminated by the global physiological noise are detected by using WTC. Specifically, firstly 
we calculate the time-frequency distributed WTC map (also called scalogram [35]) between the 
current denoising channel’s signal and every other channel’s unfiltered signal. These WTC 
maps are further binarized according to the significance of the WTC value at each 
time-frequency pixel. Then all these WTC maps are averaged, forming a globally co-varying 
time-frequency map. The value of a given pixel in this averaged map reflects how globally the 
current channel co-varies with other channels at this time-frequency point. Finally, a denoising 
mask for the current channel is generated by applying a threshold k to the globally co-varying 
time-frequency map. In stage two, the signal of the current denoising channel is decomposed 
into the time-frequency space by using WT. Then the wavelet energy at those 
noise-contaminated time-frequency points is suppressed by applying the mask obtained in 
stage one to the wavelet coefficients. Finally, the signal is reconstructed by using the inverse 
wavelet transform. The above two stages are repeated per channel to complete the global 
physiological noise removal. (Fig. 1). 
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Fig. 1. The flow chart of the method. The chart illustrates the two-stage procedure for removing 
a single channel’s global physiological noise. The black section of the mask is the blocked 
portions. The procedure is repeated per channel to complete the entire noise removal processing. 

This method utilizes the global distribution property of the physiological noise. Using this 
method, the time-frequency components with high globally co-varying feature are labeled as 
contaminated and removed, while the interested neural components are reserved because they 
are relatively local. Also note that because the WTC can track the co-varying feature of two 
signals even if there is a time delay between them, so our method can deal with the possible 
time lags between the physiological noise of different channels. 

The selection of the threshold k is important. Indeed, k is a quantification definition of the 
globality of the global physiological noise. Ideally, k should be equal to 100% if assuming the 
global physiological noise is significantly coherent among all channels. However, the global 
physiological noise is not completely spatial homogeneous. Therefore, too strict definition of 
the globality (high k) can decrease the noise removal performance of the algorithm. On the 
other hand, too loose definition of the globality (low k) may lead loss of the interested neural 
activity because the neural components within a same functional area may be also coherent. 
Therefore, theoretically, if assuming the neural components are coherent within the entire 
interested brain regions, the threshold k should satisfy 

 ,ROI

T

N
k

N
>  (4) 

where ROIN  indicates the number of the interested channels (regions of interests, ROI) and 

TN  means the number of all the channels. In the present study, we used a simulated 

experiment with set/known number of ROIN  and TN  to validate this lower bound of k. We 

also conducted a real experiment to test the influence of different k value selection on the 
denoising performance. 

3. Experiments 
3.1 Simulation experiment 

In the simulation experiment, we simulated a 66-channel fNIRS measurement (6 rows by 11 
columns) on the head surface. The measurement contained a 14-channel ROI (region of 
interest). All the channels were filled with simulated global physiological noise consisted of 
multiple sinusoidal signals of different frequency, including the heart beat (1 Hz), the 
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respiration (0.3 Hz), the Mayer waves (around 0.1 Hz) and the very low-frequency oscillations 
(below 0.01 Hz) [35, 45, 46]. Moreover, to test whether our method can deal with the possible 
time delay of the global physiological noise spreading among different measurement channels 
on the head surface, a maximum of 6 s time delay was simulated, spreading from an origin point 
(the bottom-middle channel) outward to the other channels. We set the time lag of a channel 
according to its Chebyshev distance (d1,2 = max(|x1 - x2|, |y1 - y2|)) from the origin point (Fig. 
2(A)). 

Both task- and resting-state data set were simulated to validate the proposed method. The 
task-evoked neural activity signal was simulated as a boxcar function convolved with the 
canonical hemodynamic response function (HRF). The simulated resting-state spontaneous 
neural activity signal was a combine of a series of sinusoidal functions with random phase. The 
frequency range of these sinusoidal functions was from 0.01 Hz to 0.1 Hz, stepped by 0.001 Hz, 
with amplitude distributed in 1/f manner [45] (Fig. 2(B)). The simulated task- and resting-state 
signals were set only in the ROI channels and were mixed with the simulated global 
physiological noise. The amplitude ratio of the neural signal and the physiological noise was set 
to from 1: 8 to 1: 10, randomly across channels. A 10 dB random Gauss white noise was also 
added to each channel’s simulated signal. The length of the simulated time series was 300 s, 
with a sampling rate of 10 Hz (Fig. 2(C)). 

 

Fig. 2. The simulation experiment. (A) The simulated 66-channel fNIRS measurement (6 rows 
by 11 columns). All the channels were filled with simulated global physiological noise. The red 
frame indicates the ROI in which the simulated neural activity was added. A maximum of 6 s 
time-lag of the physiological noise was simulated, spreading from the bottom-middle channel to 
the outer channels as indicated by grey scale. (B) The simulated task-evoked neural signal (left) 
and the spontaneous resting-state neural signal (right) as the ground truth. (C) The noise 
contaminated signal (the blue line). The ground truth signal was also plotted (the black lines). 
Note the extremely low signal-to-noise ratio of the mixture signal. 

Both the task- and resting-state data sets were denoised by using the proposed method with 
different globality threshold k to remove the global physiological noise. The recovered signals 
were then compared with the ground truth signals. To examine the lower bound of the globality 
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threshold parameter k, the recovered signal in ROI derived from each k was then regressed by 
the ground truth signal to see whether the recovered signal can well reproduce the ground truth 
signal. 

3.2 Real experiment 

We then conducted a finger-tapping motor task experiment and a resting-state experiment to 
further validate the proposed method. Forty healthy right-handed young adult participants (21.7 
± 2.5 years of age, 22 males and 18 female) were recruited from Shenzhen University. All 
participants underwent a 10-minute resting-state session followed by a 5.6-minute task session 
of fNIRS recording. In the resting-state session, the participants were instructed to keep still 
with their eyes closed and relax their mind. In the task session, participants performed a 
sequential bilateral finger-tapping task containing seven task blocks with a pseudo-randomized 
block length of 20–30 s [47]. Informed consent was obtained from all subjects. The study 
protocol was approved by the Institutional Review Board at Shenzhen Key Laboratory of 
Affective and Social Neuroscience, Shenzhen University. 

The fNIRS measurement was conducted by using a NIRScout continuous wave fNIRS 
system (NIRx Medical Technologies, USA). The absorptions of the near-infrared lights at two 
wavelengths (785 nm and 830 nm) were measured with a sampling rate of 7.8125 Hz. Two 4 × 
4 probe sets were used in this study with each probe set consisting of eight laser sources and 
eight detectors, forming 24 measurement channels (48 channels in total). The source-detector 
distance was 30 mm. The two probe sets were respectively placed on the head with their center 
at C3 and C4 of the international 10–20 system [48] to cover the bilateral sensorimotor areas. 
The cortex localization of the channels was obtained by using a 3-dimentional digitizer and the 
NIRS-SPM software [49, 50]. The oxygenated (HbO) and the deoxygenated (HbR) signals 
were calculated with the modified Beer–Lambert law [5], with differential pathlength factor 
(DPF) of 7.25 and 6.38 for 785 nm and 830 nm, respectively [51]. 

All the fNIRS signals were firstly detrended by fitting the first and second order polynomial 
functions to remove the linear and bilinear trends [27]. Then the global physiological noise was 
removed by using the proposed method. For the task activation calculation, the general linear 
model (GLM) approach was used. The regressor was made by convolving the block design 
with the canonical HRF. The group-level activation t-map was derived by conducting a one 
sample t-test on all individual β values [47, 52]. For the resting-state functional connectivity 
(RSFC) calculation, the spontaneous neural activity was extracted by using a 0.01—0.08 Hz 
band-pass filter [53]. The seed channels (the sensorimotor area, left channel 5 and 9) were 
determined according to the task activation results. The average time course of the two seed 
channels was used as the seed time course to calculate the Pearson’s correlation coefficients 
with the time course of each channel. The Fisher’s z-transform was applied to the Pearson’s 
correlation coefficients to increase the Gaussianility [54]. Then the group-level RSFC t-map 
was derived by using the one sample t-test [27]. For comparison, the task activation map and 
the RSFC map were also calculated without denoising. The receiver operating characteristic 
(ROC) curve and the area under the ROC curve (AUC) [55] were used to evaluate the 
performance of our method in detecting the task activation and the RSFC of the sensorimotor 
area. The sensorimotor template derived from the cortex localization was used as the ground 
truth to draw the ROC curve [56]. By using varied k values, we also explored the influence of 
the k value selection on the denoising performance in the real fNIRS data set. 

4. Results 
4.1 Simulation experiment 

Figure 3 illustrates the recovered neural signal (the red line) and the corresponding ground truth 
signal (the black line) of a randomly selected ROI channel for the task- and resting-state data 
set, respectively, using k of 50%. The Pearson’s correlation coefficient between the 
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reconstructed signal and the ground truth signal was 0.60 for the task-state and 0.43 for the 
resting-state, respectively. The results showed that the recovered signal well reproduced the 
ground truth signal (Fig. 3). The high-frequency oscillation in the recovered signal was the 
residual Gauss white noise which can be easily removed by low-pass filtering. 

 

Fig. 3. The recovered neural signal. The red line indicates the recovered neural signal and the 
black line indicates the ground truth signal. Only for display purpose, a 5-point moving average 
of the recovered signal was applied to control the amplitude of the Gauss white noise. 

The denoising results showed that when k was greater than or equal to the ratio of the 
number of ROI channels to the number of total channels (20% in our simulation experiment), 
the recovered signal can well reproduce the ground truth signal (Fig. 4). However, when k is 
less than this ratio, the recovered signal cannot reproduce the ground truth signal. These results 
suggested that the globality threshold k should at least be the ratio of the area of the interest to 
the area of the total measurements to avoid damaging the interested neural activity. 
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Fig. 4. The denoising results of different globality threshold k in the simulation experiment. The 
vertical coordinate was the p-value of the regression. The horizontal coordinate was the 
globality parameter k, represented by a ratio (the ratio means for the currently denoising channel, 
with how many channels of the other 65 channels a time-frequency component co-varies should 
it be labeled as contaminated in the present study). Note that when k was less than 20% (13/65, 
the number of the ROI channels divided by the number of all channels, except the currently 
denoising ROI channel), the recovered signal cannot significantly reproduce the ground truth 
signal (the dashed line indicates the significance level of 0.05). 

4.2 Real experiment 

The activation maps (Fig. 5, left panel) and the RSFC maps (Fig. 5, right panel) derived from 
the HbO signal with using our method to remove the global physiological noise (Fig. 5, second 
row) showed more consistency with the sensorimotor template (the first row) compared to 
those maps without using our method (Fig. 5, third row). ROC curve analysis showed that 
higher AUC indices in both the task activation map and the RSFC map derived from the 
corrected data using our method than those from the uncorrected data (0.81 vs. 0.78 for task 
activation, and 0.82 vs. 0.71 for RSFC; Fig. 6). 
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Fig. 5. The task activation maps and the RSFC maps. The left column and the right column 
respectively show the group-level task activation results and the RSFC results, derived from the 
corrected HbO data (the second row) and the uncorrected HbO data (the third row), with the 
globality threshold k = 50%. The first row shows the sensorimotor template. 

 

Fig. 6. The receiver operating characteristic (ROC) curve. The left and the right panel show the 
ROC curves of the task activation map and the RSFC map, respectively (globality threshold k = 
50%). The red line indicates the ROC curve of the map derived from the corrected HbO data, and 
the blue line indicates the ROC curve of the map derived from the uncorrected HbO data. 

The denoising analyses with varied threshold k showed that the best performance of our 
WT-based method was at k = 50% in the present data set (Fig. 7). When k < 50%, performance 
of the WT-based method decreased as a function of the k value. This result was consistent with 
that of the simulation experiment. As we predicted in the theoretical analysis, when k > 50%, 
the performance of the algorithm decreased as well. This may be because the physiological 
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noise is spatially heterogeneous, therefore an over-estimated globality threshold may be too 
strict for noise detection. Similar result could also be found on the HbR data (see Appendix). 

Fig. 7. The denoising performance of different globality threshold k on the real experiment. The 
vertical coordinate is the AUC index of the task activation map (the blue line) and the RSFC map 
(the red line) of the HbO data. The horizontal coordinate is the globality parameter k from 20% 
to 100%, stepped by 10%. The dashed lines show the AUC values derived from the uncorrected 
data. 

5. Discussion and conclusion
The current study developed a wavelet transform based method for fNIRS global physiological 
noise removal. The method consisted of two parts. The first part was the temporal-frequency 
global noise detection based on the wavelet transform coherence, and the second part was the 
signal decomposition and noise removal based on the wavelet transform and reconstruction. 
The results from the simulation experiment and the real experiment showed that the method can 
effectively remove the global physiological noise in fNIRS signal and improve the spatial 
specificity of the task activation and the resting-state functional connectivity. 

Our method has several advantages. Firstly, compared with the traditional frequency-based 
filtering, the exact frequency distribution of the noise is unnecessary to know for our method 
because it adequately utilizes the global distribution property of the noise. The globally 
co-varying time-frequency components in the signal can be detected by using the wavelet 
transform coherence. Moreover, our method can also deal with the potential time variance of 
the noise based on the time-frequency analysis ability of the wavelet transform. Secondly, our 
method can deal with the time-lag of the physiological noise among different brain regions. The 
global physiological noise shows a significant spatially spreading pattern. Tong and Frederick 
found that the whole circulatory process of the low-frequency physiological signal averagely 
takes about 6 s spreading over the head [57]. And a recent study made by Zhang et al. [21] also 
showed that the physiological interference in superficial layers is highly consistent in a local 
brain region, but the consistency is significantly lower between distant brain regions. These 
findings suggested that the physiological noise is not time-aligned among different fNIRS 
channels, which may bring difficulty to the blind source separation methods such as ICA and 
PCA when extracting a common physiological noise component from all channels. In our 
method, the wavelet transform coherence can capture the co-varying characteristics between 
two signals with time delay between them and thus can solve this problem. Thirdly, our method 
is completely data-driven. It is independent of any extra hardware to record the physiological 
noise or manually picking up the noise component. It is simple to use and can be applied to 
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most of the multi-channel fNIRS apparatus. These advantages make our method a promising 
preprocessing tool for fNIRS studies. 

Our method also has some limitations. For example, the current method is based on utilizing 
the global property of the physiological noise. The globality threshold k plays a key role in the 
method. But the selection of k based on a-priori knowledge of the expected size of the ROI also 
relies on rich user experience. On one hand, selecting a too small k will reduce the specificity of 
the noise detection, might even lose the signal of the neural activity. According to the 
theoretical analysis and the experimental results, k should not be less than the ratio of the area 
of the interested functional region to the area of the total measurement. Therefore, the area of 
the ROI should be estimated as accurately as possible. This is relatively easy when the ROI is 
clearly determined. However, when the ROI is not explicit, for example, in some exploratory 
studies, the k value should be selected with caution. In this situation, a larger k may reduce the 
risk of removing the interested neural activity. On the other hand, a too large k will reduce the 
sensitivity of the noise detection. In the present study, the results from the real data suggested 
that a k of 50% can give the best performances for both task activation and RSFC detections. 
The results also indicated that higher k values (from 60% to 90%) could decrease the 
performance. However, one can still benefit from the method even if higher k values are used 
when compared to nonuse. In addition, the task activation AUC is relatively independent of k 
above 50% when compared to the RSFC AUC. This may be because the RSFC derived from 
HbO signal is more sensitive to the global physiological noise. Further studies are still needed 
to explore the optimal k value selection for different experiment types. Another limitation is 
that the current method can only be applied to off-line data. In the future, we plan to develop the 
on-line version of this method for real-time applications such as the brain-computer interface 
and the neurofeedback. 

In conclusion, the present study proposed a promising method for fNIRS global 
physiological noise removal which has unique advantages. Our method can be applied to both 
task-based and resting-state fNIRS data, and its effectiveness was validated by using both 
simulation experiment and real experiment. Our method can be complementary to the sSD and 
the BSS methods to remove the global physiological noise, which represents a necessary 
evolution in fNIRS signal processing. 

Appendix 
Appendix listed the corresponding results of the HbR data (Fig. 8, 9 and 10). 
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Fig. 8. The task activation maps and the RSFC maps of HbR data. The left column and the right 
column respectively show the group-level task activation results and the RSFC results, derived 
from the corrected HbR data (the second row) and the uncorrected HbR data (the third row), with 
the globality threshold k = 50%. The first row shows the sensorimotor template. 

Fig. 9. The receiver operating characteristic (ROC) curves of HbR data. The left and the right 
panel show the ROC curve of the task activation map and the RSFC map, respectively (globality 
threshold k = 50%). The red line indicates the ROC curve of the map derived from the corrected 
HbR data, and the blue line indicates the ROC curve of the map derived from the uncorrected 
HbR data. 
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Fig. 10. The denoising performance of different globality threshold k on the real experiment 
(HbR data). The vertical coordinate is the AUC index of the task activation map (the blue line) 
and the RSFC map (the red line) of the HbR data. The horizontal coordinate is the globality 
parameter k from 20% to 100%, stepped by 10%. The dashed lines show the AUC values derived 
from the uncorrected data. 
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